Automatic Control

If you have a smart project, you can say "I'm an engineer"

Lecture 3

Staff boarder

Dr. Mohamed Saber Sokar
Dr. Mostafa Elsayed Abdelmonem
\square

Automatic Control MPE 424

- Lecture aims:
- Understand the mathematical modeling of all systems and combination

Modeling of electrical system

Electrical Inductance	Describing Equation source (i)	Describing Equation source (v)
$v_{2} _\sim v_{1}$	$i=\frac{1}{L} \int v_{21} d t$	$v_{21}=L \frac{d}{d t} i$

Electrical Capacitance

Electrical Resistance

$\mathrm{i}=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{21}$

$$
v_{21}=\frac{1}{C} \int i d t
$$

$$
\mathrm{i}=\frac{1}{\mathrm{R}} \cdot \mathrm{v}_{21}
$$

$$
v_{21}=i R
$$

Modeling of electrical system

RLC circuit.

Current (1) $R\left\{C \frac{+}{T-} \quad \frac{\mathrm{v}(\mathrm{t})}{\mathrm{R}}+\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}(\mathrm{t})+\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \mathrm{v}(\mathrm{t}) \mathrm{dt}=\mathrm{r}(\mathrm{t})\right.$

Modeling of electrical system

RLC circuit.

$$
L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t=e
$$

Modeling of electrical system

- Kirchhoff's laws:

1. Kirchhoff's voltage law. The algebraic sum of the voltages in a loop is equal to zero.
2. Kirchhoff's current law. The algebraic sum of the currents in a node is equal to zero.

Modeling of electrical system

- Kirchhoff's laws:

Kirchhoff's voltage law. The algebraic sum of the voltages in a loop is equal to zero.

- Loop (1)
- $\mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{R}}+\mathrm{Vc}$

$$
R_{1} i_{1}(t)+\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t-\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=v(t)
$$

- Loop (2)

- $0=V_{R}+V c$
$-\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t+R_{2} i_{2}(t)+L \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}+\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=0$

Modeling of electrical system

- Transfer from time domain to frequency domain:

$$
\begin{aligned}
& R_{1} i_{1}(t)+\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t-\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=v(t) \\
& {\left[R_{1}+\frac{1}{C s}\right] I I_{1}(s)-\frac{1}{C s} I_{2}(s)=V(s)} \\
& -\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t+R_{2} i_{2}(t)+L \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}+\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=0 \\
& -\frac{1}{C s} I_{1}(s)+\left[R_{2}+L s+\frac{1}{C s}\right] \mathrm{I}_{2}(s)=0
\end{aligned}
$$

- Transfer function

$$
\frac{I_{2}(s)}{V(s)}=\frac{C s}{\left(R_{1} C s+1\right)\left(L C s^{2}+R_{2} C s+1\right)-1}=\frac{1}{R_{1} L C s^{2}+\left(R_{1} R_{2} C+L\right) s+R_{1}+R_{2}}
$$

Modeling of electrical system

$$
\begin{aligned}
& \frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{\mathrm{R}_{2}}{\mathrm{R}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& \frac{\mathrm{R}_{2}}{\mathrm{R}}=\frac{\theta}{\theta_{\max }}
\end{aligned}
$$

$$
\mathrm{V}_{2}(\mathrm{~s})=\mathrm{k}_{\mathrm{s}}\left(\theta_{1}(\mathrm{~s})-\theta_{2}(\mathrm{~s})\right)
$$

$$
\mathrm{V}_{2}(\mathrm{~s})=\mathrm{k}_{\mathrm{s}} \cdot \theta_{\text {error }}(\mathrm{s})
$$

$$
\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{V}_{\text {battery }}}{\theta_{\text {max }}}
$$

Modeling of electrical system

- Analogous to Kirchhoff's laws for networks is d'Alembert's law for mechanical systems which is stated as follows: D'Alembert's law of forces: The sum of all forces acting upon a point mass is equal to zero.

Element	Physical variable	Linear operator	Inverse operator
Electrical Networks			
Resistor R	Voltage $\mathrm{v}(\mathrm{t})$ Current i(t)	$v(t)=R(t)$	$i(t)=\frac{1}{R} v(t)$
Inductor L		$v(t)=L \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{t}^{\text {d }}$ ($)$	$i^{i}(t)=\frac{1}{L} \int_{0}^{t} v(t) \mathrm{d} t$
Capacitor C		$v(t)=\frac{1}{C} \int_{0}^{i}{ }^{i}(t) \mathrm{d} t$	$i(t)=C \frac{\mathrm{~d}}{\mathrm{~d} t} \tau^{\prime}(t)$
Mechanical Systems			
Friction coefficient B	Force f(t) Velocity $\mathrm{v}(\mathrm{t})$	$f(t)=B_{v}(t)$	$v(t)=\frac{1}{B} f(t)$
Mass m		$f(t)=m \frac{\mathrm{~d}}{\mathrm{~d} t}(t)$	$v(t)=\frac{1}{m} \int_{0}^{t} f(t) \mathrm{d} t$
Spring constant K		$f(t)=K \int_{0}^{t} v(t) \mathrm{d} t$	$v(t)=\frac{1}{K} \frac{\mathrm{~d}}{\mathrm{~d} t} f(t)$

Analogy

- Force - voltage analogy
$L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t=e$
In terms of the electric charge q, this last equation becomes $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=e$

Mechanical Systems	Electrical Systems
Force p (torque T)	Voltage e
Mass m (moment of inertia J)	Inductance L
Viscous-friction coefficient b	Resistance R
Spring constant k	Reciprocal of capacitance, 1/C
Displacement x (angular displacement θ)	Charge q
Velocity $\dot{x}($ angular velocity $\dot{\theta}$)	Current i

Analogy

- Force - current analogy
$\frac{1}{L} \int e d t+\frac{e}{R}+C \frac{d e}{d t}=i_{s}$
In terms of the magnetic flux ψ, this last equation becomes

$$
C \frac{d^{2} \psi}{d t^{2}}+\frac{1}{R} \frac{d \psi}{d t}+\frac{1}{L} \psi=i_{s}
$$

Mechanical Systems	Electrical Systems
Force p (torque T)	Current i
Mass m (moment of inertia J)	Capacitance C
Viscous-friction coefficient b	Reciprocal of resistance, $1 / R$
Spring constant k	Reciprocal of inductance, $1 / L$
Displacement x (angular displacement θ)	Magnetic flux linkage ψ
Velocity \dot{x} (angular velocity $\dot{\theta}$)	Voltage e

Modeling of Motors

Modeling of Motors

$$
\frac{\theta(\mathrm{s})}{\mathrm{V}_{\mathrm{f}}(\mathrm{~s})}=\frac{\mathrm{K}_{\mathrm{m}}}{\mathrm{~s} \cdot(\mathrm{~J} \cdot \mathrm{~s}+\mathrm{b})\left(\mathrm{L}_{\mathrm{f}} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{f}}\right)}
$$

$$
\frac{\theta(\mathrm{s})}{\mathrm{V}_{\mathrm{a}}(\mathrm{~s})}=\frac{\mathrm{K}_{\mathrm{m}}}{\mathrm{~s} \cdot\left[\left(\mathrm{R}_{\mathrm{a}}+\mathrm{L}_{\mathrm{a}} \cdot \mathrm{~s}\right)(\mathrm{J} \cdot \mathrm{~s}+\mathrm{b})+\mathrm{K}_{\mathrm{b}} \cdot \mathrm{~K}_{\mathrm{m}}\right]}
$$

Mathematical Modeling Of Electronic Circuits

The ideal op-amp.

An inverting amplifier operating with ideal conditions.

Mathematical Modeling Of Electronic Circuits

- Operational amplifiers, often called op-amps, are important building blocks in modem electronic systems. They are used in filters in control systems and to amplify signals in sensor circuits.

$$
e_{o}=K\left(e_{2}-e_{1}\right)=-K\left(e_{1}-e_{2}\right)
$$

- The input e1 to the minus terminal of the amplifier is inverted; the input e2 to the plus terminal is not inverted.)

Mathematical Modeling Of Electronic Circuits

- Let us obtain the voltage ratio eolei. In the derivation, we assume the voltage at the minus terminal as e^{6}. This is called an imaginary short. Consider again the amplifier system

$$
i_{1}=\frac{e_{i}-e^{\prime}}{R_{1}}, \quad i_{2}=\frac{e^{\prime}-e_{o}}{R_{2}} \quad \frac{e_{i}-e^{\prime}}{R_{1}}=\frac{e^{\prime}-e_{o}}{R_{2}}
$$

- $e^{\prime}=0$. Hence, we have

$$
\frac{e_{i}}{R_{1}}=\frac{-e_{o}}{R_{2}} \quad e_{o}=-\frac{R_{2}}{R_{1}} e_{i}
$$

Mathematical Modeling Of Electronic Circuits

- Obtain the relationship between the output eo and the inputs e1, e2, and e3

$$
\begin{gathered}
i_{1}=\frac{e_{1}-e^{\prime}}{R_{1}}, \quad i_{2}=\frac{e_{2}-e^{\prime}}{R_{2}}, \quad i_{3}=\frac{e_{3}-e^{\prime}}{R_{3}}, \quad i_{4}=\frac{e^{\prime}-e_{0}}{R_{4}} \\
\frac{e_{1}-e^{\prime}}{R_{1}}+\frac{e_{2}-e^{\prime}}{R_{2}}+\frac{e_{3}-e^{\prime}}{R_{3}}+\frac{e_{o}-e^{\prime}}{R_{4}}=0
\end{gathered}
$$

- $e^{\prime}=0$. Hence, we have

$$
\begin{aligned}
& \frac{e_{1}}{R_{1}}+\frac{e_{2}}{R_{2}}+\frac{e_{3}}{R_{3}}+\frac{e_{o}}{R_{4}}=0 \\
& e_{o}=-\frac{R_{4}}{R_{1}} e_{1}-\frac{R_{4}}{R_{2}} e_{2}-\frac{R_{4}}{R_{3}} e_{3}
\end{aligned}
$$

Mathematical Modeling Of Electronic Circuits

$$
\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=-\mathrm{RCs}
$$

Mathematical Modeling Of Electronic Circuits

$\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{\mathrm{R}_{2}\left(\mathrm{R}_{1} \cdot \mathrm{C} \cdot \mathrm{s}+1\right)}{\mathrm{R}_{1}}$

$$
\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{-\left(\mathrm{R}_{1} \cdot \mathrm{C}_{1} \cdot \mathrm{~s}+1\right)\left(\mathrm{R}_{2} \cdot \mathrm{C}_{2} \cdot \mathrm{~s}+1\right)}{\mathrm{R}_{1} \cdot \mathrm{C}_{2} \cdot \mathrm{~s}}
$$

Modeling of Motors

Modeling of Motors

Modeling of Motors

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is

$$
v_{\mathrm{f}}=R_{\mathrm{f}} i_{\mathrm{f}}+L_{\mathrm{f}} \frac{\mathrm{~d} i_{\mathrm{f}}}{\mathrm{~d} t}
$$

The voltage v_{g} of the generator G is proportional to the current i_{f}, i.e.,

$$
v_{\mathrm{g}}=K_{\mathrm{g}} i_{\mathrm{f}}
$$

The voltage v_{m} of the motor M is proportional to the angular velocity ω_{m}, i.e.,

$$
v_{\mathrm{m}}=K_{\mathrm{b}} \omega_{\mathrm{m}}
$$

The differential equation for the current i_{a} is

$R_{\mathrm{a}} i_{\mathrm{a}}+L_{\mathrm{a}} \frac{\mathrm{d} i_{\mathrm{a}}}{\mathrm{d} t}=v_{\mathrm{g}}-v_{\mathrm{m}}=K_{\mathrm{g}} i_{\mathrm{f}}-K_{\mathrm{b}} \omega_{\mathrm{m}}$
The torque T_{m} of the motor is proportional to the current i_{a}

$$
T_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is
The rotational motion of the rotor is described by

$$
J_{\mathrm{m}}^{*} \frac{\mathrm{~d} \omega_{\mathrm{m}}}{\mathrm{~d} t}+B_{\mathrm{m}}^{*} \omega_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

where $J_{m}{ }^{*}=J_{m}+N^{2} J_{L}$ and $B_{m}{ }^{*}=B_{m}+N^{2} B_{L}$, where $N=N / / N_{2}$. Here, J_{m} is the moment of inertia and B_{m} the viscosity coefficient of the motor: likewise, for $J_{\llcorner }$and $B_{\llcorner }$of the load. where use was made of the relation

$$
\omega_{\mathrm{y}}=N \omega_{\mathrm{m}} .
$$

The tachometer equation

$$
v_{y}=K_{\mathrm{t}} \omega_{\mathrm{y}}
$$

the amplifier equation
$v_{f}=K_{a} v_{e}$

Mathematical Modeling

The mathematical model of the Ward-Leonard layout are as follows .

$$
\begin{aligned}
& \frac{\Omega_{\mathrm{y}}(s)}{V_{\mathrm{f}}(s)}=\frac{K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{\mathrm{a}}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]} \\
& \frac{\Omega_{y}(s)}{v_{e}(s)}=\frac{K_{\mathrm{a}} K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{a}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]}
\end{aligned}
$$

Model Examples

- Stepper motor

Thank you

